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The theoretical development of a magnetic force and an induced motion while applying a magnetic
field to magnetic nanoparticles in elastic media is described. An analytical expression for tissue-
surface displacement derived from Mindlin’s theory of elasticity in semi-infinite media was used
to analyze the magneto-motive technique. The initial motion of the magnetic nanoparticles is
driven by a constant magnetic force that displays a dampened transient motion before steady-
state movement at twice the modulation frequency of the applied sinusoidal magnetic field. The
motion of the nanoparticles at double the modulation frequency originated from the magnetic
force being proportional to the product of the magnetic flux density and its gradient. Finally,
we demonstrate the detection of iron-oxide nanoparticles taken up by liver parenchymal Kupffer
cells and macrophages in atherosclerotic plaques by using a differential-phase optical coherence
tomography (DP-OCT) system to compare simulation results with experimental data.
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I. INTRODUCTION

Magnetic nanoparticles have been studied intensively
over the past decade for use as contrast agents in mag-
netic resonance imaging [1] and are considered as promis-
ing candidates for various applications combining diag-
nosis, imaging, and therapy. More recently, magnetic
nanoparticle probes have been expanded for numerous
novel biomedical applications, such as reagents for cell
labelling [2], cell tracking [3], drug delivery [4], cell sep-
aration [5], and treatment of cancer [6, 7]. Recently,
there has been increased interest in the development of
highly susceptible magnetic probes and contrast mecha-
nisms appropriate for molecular imaging and biomed-
ical applications. A magneto-motive technique using
mechanically- applied time-varying or pulsed magnetic
forces to a specific tissue induces a small displacement
of particles in the surrounding tissue, which can be de-
tected or imaged using traditional imaging modalities,
such as optical coherence tomography (OCT) [8,9], ul-
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trasound (US) [10], laser speckle imaging (LSI) [11], and
photoacoustic tomography (PAT) [12].

Examination of the sentinel lymph nodes (SLNs), the
first lymph nodes that drain primary tumors and the pri-
mary site reached by metastasizing cancer cells, plays an
important role in the diagnosis and treatment of cancer.
Recently, both frequency- and phase-gated magneto-
motive ultrasound (MM-US) has been used to image
SLNs in prior staging using magnetic nanoparticles [13].
Magneto-motive photoacoustic (MM-PA) imaging is a
newly developed technique to increase the sensitivity and
specificity of targeted lesions compared to conventional
photoacoustic imaging. MM-PA, when it incorporates
the use of multiple contrast agents and magnetic ma-
nipulations [14], dramatically reduces background noise
from strong optical absorbers, such as blood and tis-
sue. To overcome the inherent limitations of small
tissue-restoring forces and the slow acquisition speed
of magneto-motive optical coherence tomography(MM-
OCT), a dual coil magnetic generator was developed that
utilized a higher frequency (> 500 Hz) to reduce interfer-
ence from the low-frequency signals generated from the
intrinsic heartbeat, the pulsation of blood vessels, and
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Fig. 1. (Color online) Outline of the theoretical model of magnetic force acting on magnetic nanoparticles in elastic media.

muscle twitching within the body [15].
Most previous investigations using magneto-motive

techniques have demonstrated the ability to identify
magnetically-labelled cells in phantom studies using var-
ious imaging modalities. Because the particles used in
this technique are on the nanoscale order, and thus are
at the sub-resolution level, we cannot resolve them in-
dividually, but rather we can detect their aggregate re-
sponses and how they displace structures (e.g., cells and
organelles) within their microenvironments.

For the demonstration of a magnetic force acting
on magnetic nanoparticles, fiber-based dual-channel
differential-phase optical coherence tomography (DP-
OCT), which is capable of high path-length sensitivity,
is able to detect an optical path-length change (∆p) with
nanometer resolution between discrete reflecting sur-
faces. DP-OCT has been applied to the phase-contrast
imaging of cells, the measurement of nanometer-scale
displacement changes corresponding to neuronal activ-
ity without application of chemicals, the electro-kinetic
response of cartilage samples to an external current, the

photo-thermal response of tissue damage, and changes
in analyte concentrations [16]. Figure 1 summarizes
this paper, illustrating the theoretical development of
the magnetic force and motion induced by the applica-
tion of a magnetic force to magnetic nanoparticles, and
presents a tissue-surface displacement equation derived
from Mandlin’s elasticity theory in a semi-infinite model.

II. METHODS

1. Magnetic Field Effect on the Magnetic
Nanoparticles

Table 1 illustrates the commercially-available mag-
netic nanoparticles, as classified by their overall size
and surface coating. Magnetic nanoparticles can be di-
vided into three different categories: 1) standard super-
paramagnetic iron oxide (SPIO), ranging from 60 ∼ 150
nm; 2) ultra-small SPIO (USPIO), ranging from 10 ∼ 40
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Table 1. Classification of SPIO nanoparticles [1,6,17].

Agent Class Trade and common names Status Mean size

AMI-121 Oral SPIO Lumirem, Gastromark, Ferumoxsil Approved > 300 nm

OMP Oral SPIO Abdoscan Approved 3.5 µm

AMI-25 SPIO Feridex, Endorem, Ferumoxide Approved 80 ∼ 150 nm

SHU555A SPIO Resovist Phase III 62 nm

AMI-227 USPIO Sinerem, Combidex, Ferumoxtran Phase III 20 ∼ 40 nm

NC100150 USPIO Clariscan Phase II 20 nm

CODE 7228 USPIO (Advanced Magnetics) Phase II 18 ∼ 20 nm

MION-46 MION MION46 (manufactured by CMIR) - 20 ∼ 25 nm

MION-47 MION MION47 (manufactured by CMIR) - 27.5 nm

MION-48 MION MION48 (manufactured by CMIR) - 20 ∼ 25 nm

Table 2. Properties and applications of super-paramagnetic nanoparticles [1].

Agent Class Target Organs Dose Reference

AMI-121 Oral SPIO GI lumen 1.5 ∼ 3.9 mmol/Fe [30]

OMP Oral SPIO GI lumen 0.5 g/l (400 − 600 ml) [31]

AMI-25 SPIO Liver / Spleen 15 µmol Fe/kg [32]

SHU555A SPIO 7 Liver / Spleen 8 µmol Fe/kg [32–34]

Perfusion 4 ∼ 16 mol Fe/kg

MRA 10 µmol Fe/kg

AMI-227 USPIO Lymph nodes 30 ∼ 45 µmol Fe/kg [35–38]

MRA 14 ∼ 30 mol Fe/kg

NC100150 USPIO Perfusion 7 µmol Fe/kg [22]

MRA 50 ∼ 100 mol Fe/kg [39]

CODE 7228 USPIO µmol Fe/kg

MION MION Liver µmol Fe/kg [3,6,21,40]

Atherosclerosis µmol Fe/kg

nm, and; 3) monocrystalline iron oxide (MION, a sub-
set of USPIO), ranging from 10 ∼ 30 nm [17]. Table
2 illustrates the properties and applications of super-
paramagnetic iron-oxide nanoparticles, including SPIO,
USPIO, and MION.

To evaluate the force acting on magnetic nanoparti-
cles, we used the magnetic energy for this analysis [18],
as indicated by the following equation:

U = −1
2
m ·B. (1)

If a magnetic material is exposed to an external magnetic
flux density, B, individual nanoparticles have an overall
response determined by the magnetic moment, m, and
the viscoelastic properties of the surrounding material,
including tissue and cells. The magnetic flux density on
magnetic nanoparticles may be written as the following:

B = µ0(H + M), (2)

where µ0(4π × 10−7 H/m) is the permeability of free
space (SI unit: 4π × 10−7 N/A2), M is the magnetic
moment per unit volume, and H is the magnetic field
strength. The magnetic moment, m, within the volume,
V, is given by m = MV.

The Magnetization of magnetic particles can be clas-
sified in terms of the standard relation M = χH. The
magnetic susceptibility (χ) is proportional to the number
of magnetic particle atoms in the tissue and the square
of the magnetic moment. In practice, the magnetization
M is not linearly proportional to magnetic field strength
H after saturation of the magnetic field (usually over 2 −
3 Tesla). This nonlinear relationship between the mag-
netization induced on a paramagnetic material and the
applied magnetic field strength is represented by using
the Langevin function [19,20]:
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Fig. 2. (Color online) Magnetization expressed as a function of the magnetic-field strength for MION nanoparticles at room
temperature. The solid line was fitted to the data by using a Langevin nonlinear function at a magnetic field of (a) 0 − 5 Tesla
and (b) 0 − 1 Tesla [26].
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where
Langevin function, L(x) = coth(x) − 1/x
N = the number of atoms per unit volume
m = the magnetic moment per atom

(4.47 × 10−8 erg/G)
k = Boltzman’s constant

(1.3807 × 10−16 erg K−1 = 1.3807 × 10−23 JK−1)
µ0 = Permeability of free space (4π × 10−7 H/m)
T = Kelvin temperature (300 K).

Once the constants, m, k, µ0, and T have been de-
termined, the total number of Fe atoms (N = 1.4076 ×
109) is calculated by nonlinear fitting (Fig. 2) of MION
magnetization data recorded by Shen et al. [21].

The Langevin function clearly represents a nonlinear
magnetization curve relationship between the magnetiza-
tion and the magnetic field strength for MION nanopar-
ticles over the entire magnetic field range of 0 − 5 Tesla,
as illustrated in Fig. 2(a). At low magnetic fields (0 − 1
Tesla), the magnetization curve for MION nanoparticles

is directly proportional to the magnetic field strength, as
shown by the linear fitting of the data (Fig. 2(b)). Af-
ter the magnetic field strength (H) reaches a value of 1.5
Tesla, the magnetization increases very slowly and be-
comes saturated when H is near or over 2 Tesla. In clin-
ical magnetic resonance imaging (MRI), the detectable
sensitivity of iron nanoparticles was reported at 50 nmol
Fe/g tissue [21]. In preliminary experiments, MION was
used to demonstrate cellular uptake of nanoparticles by
macrophages (1 mg Fe/106 cells) with 1.5 × 106 MION
particles/cell [22]. Table 3 shows the magnetic suscep-
tibility of SPIO and MION nanoparticles in CGS units
[23].

The magnetization of magnetic particles can be clas-
sified in terms of the standard relation M = χH. There-
fore, the induced magnetic moment m becomes:

m = MV = χV H = χV B/u0, (4)
B = µ0(H + χH) = µ0µRH = µH, (5)

where µR is defined as the relative permeability given
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Table 3. Magnetic susceptibility of SPIO and MION.

SPIO MION

CGS UNIT CGS UNIT

χ
(Dimensionless) (Dimensionless)

0.89 × 10−2 1.58 × 10−2

χg = χ
ρ

cm3/g cm3/g

7.16 × 10−3 2 × 10−3

χM = χWiron
ρ

cm3/mol Fe cm3/mol

0.4 ± 0.02 0.112 ± 0.008

a simple relationship (Eq. (5)) between B and H (B =
µH). The susceptibility of the magnetic nanoparticles χ
is dimensionless in SI units and given by magnetic dipole
density for each paramagnetic material, which is essential
for characterizing the magnetic properties of magnetic
nanoparticles. From Eq. (1), the magnetic energy U of a
SPIO nanoparticle in an external magnetic field is given
by:

U = −1
2
m ·B = −χsV

2u0
|B|2. (6)

The magnetic force acting on SPIO nanoparticles be-
comes

F = −∇U = ∇
(

χsV

2u0
|B|2

)
= χsV∇

(
|B|2

2u0

)
= χsV∇

(
1
2
B ·H

)
, (7)

where 1
2B·H = the magnetic static field energy density

[24]. We assume in our analysis a sinusoidal magnetic
flux density that is principally along the z-direction.
Hence, we write

−→
B(x, y, z; t) = sin(2πfnt)Bz(z)k̂ and the

magnetic force Fm acting on nanoparticles as

Fm =
χsVs

2µ0
[1− cos(4πfnt)]Bz(z)

∂Bz

∂z
, (8)

where fn is the modulation frequency of the applied si-
nusoidal magnetic field used in the magneto-motive tech-
nique.

The magnetic force on a single nanoparticle can be
calculated by using Eq. (7) and magnetic susceptibility
data from Table 2. The mass density of iron, ρspio = 5.18
(g/cm3), and the molar mass of iron, MWspio = 231.55
(g/mol), were used to calculate the magnetic force on
each nanoparticle. The magnetizations of MION (2.8
nm ± 0.9 ∼ 4.6 nm ± 1.2) [25] and SPIO nanoparticles
were reported as 38.9 emu/g iron at 2 Tesla and 63.7
emu/g iron at 1.5 Tesla, respectively [26]. To calculate
the magnetic force acting on the magnetic nanoparticle,
we used the mean molecular weights of SPIO (2000 kDa)
and MION (38.9 kDa). Figure 3 shows the simulation
results for the maximum magnetic forces acting on SPIO

Fig. 3. (Color online) Magnetic force acting on SPIO and
MION nanoparticles.

(2.6283 × 10−15 (N)) and MION (2.263 × 10−17 (N))
nanoparticles.

III. RESULTS

1. Magnetic Nanoparticle Dynamics: Steady
State

The total force acting on nanoparticles in the z-
direction can be written as∑

Fz = m
∂2z

∂t2
= Fm − kznp(t)− r

∂znp

∂t
, (9)

where kznp(t) is an elastic restoring force, and r
∂znp

∂t
is a drag force that accounts for the viscous properties
of the local tissue environment. The negative signs of
the viscous drag and restoring forces indicate that these
forces are in the opposite direction to the nanoparticle
movement, znp(t). We can write second-order differential
equations of motion by dividing by the mass m:

∂2znp(t)
∂t2

+
r

m

∂znp

∂t
+

kznp(t)
m

=
χV

2mµ0
[1− cos(4πfnt)]Bz(z)

∂Bz(z)
∂z

. (10)

Eq. (10) can be rewritten using the first terms in the
Maclarin series for the magnetic field and its gradient:

∂2znp(t)
∂t2

+
r

m

∂znp

∂t
+

kznp(t)
m

∼=
χV

2mµ0
[1− cos(4πfnt)]Bz(z)

∂Bz(0)
∂z

. (11)

Letting a = χsVs

2mµ0
Bz(0)∂Bz(0)

∂z , ωB = 4πfn, k/m = ω2
0 ,

and r/m = γ, the second- order differential equation,
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Fig. 4. (Color online) Simulated results for the motion of
SPIO nanoparticles subjected to a magnetic force of 2 Tesla
at 1 Hz.

Eq. (11), may be rewritten as

∂2znp(t)
∂t2

+γ
∂znp(t)

∂t
+ω2

0znp(t) = a[1−cos(ωBt)]. (12)

In the case of steady-state motion, znp(t) = z0,sse
iωBt

is introduced to obtain an oscillating displacement of
nanoparticles. z0,ss represents the displacement of mag-
netic nanoparticles in the steady state, and the induced
displacement of nanoparticles may, therefore, be express
as

∂2z0,sse
i(iωB)t

∂t2
+

∂z0,sse
i(ωB)t

∂t
+ ω2

0z0,sse
i(iωB)t

= −aei(iωB)t. (13)

Eq. (13), thus, becomes

[(iωB)2 + γ(iωB) + ω2
0 ]z0,ss = −a, (14)

znp(t) = z0,sse
iωBt =

−aeiωBt

[ω2
B + iγωB + ω2

0 ]
. (15)

In Eq. (15), znp(t) represents the nanoparticle’s move-
ment in the steady state corresponding to our mea-
surement of tissue surface displacement. In the case of
steady-state conditions, the displacement of nanoparti-
cles a magnetic field strength of 2 Tesla and the frequency
of 1 Hz illustrated as shown in Fig. 4.

2. Magnetic Nanoparticle Dynamics: transient
and steady states

To understand the overall mechanisms of nanoparti-
cle displacement, one can use Laplace transform to solve
the second-order differential equation, Eq. (12). Assum-
ing zero initial displacements and velocity, we find the
following:

s2Znp(s) +
r

m
sZnp(s) +

k

m
Znp(s) =

a

s
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B)

,
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1
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)
.

If 4ω2
0−γ2 > 0, we can write the nanoparticle movement

(znp(t)) by computing the sum of the transforms:
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We find the displacement znp(t) of nanoparticles by us-
ing an inverse Laplace transform; the solution includes
both transient and steady-state terms. The initial mo-
tion of magnetic nanoparticles is driven by a constant
magnetic force and displays a damped transient motion

before steady-state motion dominates at twice the modu-
lation frequency of the applied sinusoidal magnetic field.
The motion of the nanoparticles at double the modula-
tion frequency originates from the magnetic force being
proportional to the product of the magnetic flux density
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Fig. 5. (Color online) Simulation results for nanoparticle displacement driven by an external magnetic field: (a) external
magnetic flux density, (b) transient movement, and (c) steady-state movement.

and the gradient (Eq. (8)).
Figure 5 illustrates the simulation result of nanopar-

ticle displacement driven by an external magnetic field
(panel (a)), giving transient motion (panel (b)), and
steady-state motion (panel (c)), as determined by us-
ing an inverse Laplace transform of Eq. (16). The fre-
quency of the transient motion is larger than that of
the steady state motion. The larger displacements at
initial times are due to a transient effect, as steady-
state displacements are seen to be twice the frequency
of the externally-applied magnetic field. The frequency
response is given by fT = (4ω − 02 − γ2)1/2, and the
selected values are larger than those of the steady-state
motion.

To understand how the magnetic force acts on para-
magnetic materials and causes nanoparticles to move in
the z-direction, it is important to understand that the
square of the magnetic field gradient is proportional to
the magnetic force. Therefore, the motion of magnetic
nanoparticles at a given distance is determined by the
strength of the magnetic field.

3. Tissue Surface Displacement in an Elastic
Medium

The purpose of this section is to derive the force-
displacement relationship by using the theory of elas-
ticity for a nanoparticle embedded in elastic half-space.
The force on the nanoparticle is applied normal to the
boundary of a semi-infinite elastic medium, and solutions
were obtained using Galerkin’s vector and Mindlin’s the-
ory for a point force in a semi-infinite medium [27]. An
analysis of the surface displacement of iron-laden tissue is
required for a quantitative analysis of the response of an
elastic medium to an externally applied magnetic force.

The well-known basic elasticity equation is given by
[28]

G

(
∇2 +

1
1− 2ν

∇div

)
ρ + K = 0, (18)

where K is the body force, G is the modulus of rigid-
ity (shear modulus), ρ is the displacement vector, and
is Poisson’s ratio for the elastic medium. The displace-
ment using Westergaard’s form of the Galerkin vector F
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Fig. 6. (Color online) Symmetrical cylindrical coordinates
for the semi-infinite elastic model. A vertical force (P) in
the interior of the elastic model is applied at point (0, 0,

c) in the positive z-direction with R1 =
√

(r2 + (z − c)2) +√
(r2 + (z + c)2).

is given by the following:

2Gρ = (c∇2 −∇div)F,

ρ =
(c∇2 −∇div)F

2G
, (19)

F is a vector function that can be expressed as F = iX
+ jY + kZ, where i, j, and k are unit vectors in the
x, y, and z directions, respectively. The displacement
equation using Galerkin vector components becomes(

∇2 +
1

1− 2ν
∇div

)
(c∇2−∇div)F+2K = 0. (20)

Equation (20) can be expressed as the following:(
c∇4 −∇2∇div +

c

1− 2ν
∇div∇2

− 1
1− 2ν

∇div∇div

)
F + 2K = 0. (21)

with ∇4 = ∇2∇div = ∇div∇div. The reduced displace-
ment equation, Eq. (22), will be satisfied by the equation(
−1 + c

1−2ν −
1

1−2ν

)
= 0, which then becomes the fol-

lowing:[
c∇4 +∇2∇div

(
−1 +

c

1− 2ν
− 1

1− 2ν

)]
F

+2K = 0. (22)

Therefore, the basic displacement equation (19) in elastic
media using c = 2(1− ν) can be express as follows:

2Gρ = [2(1− ν)∇2 −∇div]F. (23)

In Eq. (22), we may obtain 2(1 − ν)∇4F = −2K and
∇4F = − K

(1−ν) .

K is defined as the body force in equation (23), which
can be restated as:

2Gu = 2(1− ν)∇2X−∇divF
= 2(1− ν)∇2X−∇∇ · F,

2Gv = 2(1− ν)∇2Y−∇divF
= 2(1− ν)∇2Y−∇∇ · F,

2Gw = 2(1− ν)∇2Z−∇divF
= 2(1− ν)∇2Z−∇∇ · F. (24)

Equation (25) also gives another representation, as indi-
cated below:

2Gdivρ = div[2(1− ν)∇2 −∇div]F
= [2(1− ν)∇2div −∇2div]F
= (1− 2ν)∇2divF. (25)

A vertical force P applied at a distance below the plane
surface z = 0 in an elastic medium is shown in Fig. 6 [27].

Combining a sequence of Galerkin vectors defining a
nucleus of stress and strain [29] produces seven compo-
nents comprised of parts z1, . . . z7, which are defined as
the following:

z1 =
P

8π(1− ν)
R1, z2 = − P

8π(1− ν)
R2,

z3 = − Pc

4π(1− ν)
(z + c)

R2
, z4 =

P

2π
R2,

z5 =
(1− 2ν)P

2π
[(z + c) log(R2 + z + c)−R2],

z6 = − (1− 2ν)Pc

2π(1− ν)
[log(R2 + z + c)],

z7 =
Pc2

4π(1− ν)
1

R2
, with

F = z1 + z2 + z3 + z4 + z5 + z6 + z7. (26)

If a point source position c approaches zero correspond-
ing to a single force applied at the surface of the bound-
ary, the solution becomes a Boussineq’s equation FB ,
using the Galerkin vector F, as follows:

FB =
P

2π
[2νR + (1− 2ν)z log(R + z)]. (27)

In Eq. (26), with the z1 component representing the well-
known Kevin’s single force solution in a medium with in-
finite extent, c → ∞, the corresponding Galerkin vector
F for the Kelvin solution Fk becomes the following:

Fk = k
[

PR1

8π(1− ν)

]
. (28)

As a result, the solution for vertical displacement, which
is normal to the boundary, in elastic media obtained by
combining seven nuclei of stress and strain for Eq. (26)
becomes
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F =
[

Pk
8π(1− ν)

]{
R1 + (8ν(1− ν)− 1)R2+
4(1− 2ν)[(1− ν)z − νc] log(R2 + z + c)− 2cz

R2

}
. (29)

After Eq. (24) is transformed to cylindrical coordinates, the displacement, which will only be observed in the z-
direction, is

W =
(

1
2G

)
[2(1− ν)∇2Z−∇divF] =

(
1

2G

) [
2(1− ν)∆Z− ∂2Z

∂z2

]
. (30)

The displacement in elastic media in cylindrical coordinates then becomes

W =
[

P

16πG(1− ν)

]
3−4ν
R1

+ 8ν2−12ν+5
R2

+ (z−c)2

R3
1

+ (3−4ν)(z+c)2−2cz
R3

2
+ 6cz(z+c)2

R5
2

 , (31)

with Young’s modulus E = 2(1 + ν)G and the shear modulus G.
In the deviation of the displacement defined by Eq. (31), an analysis of the surface displacement of the iron-laden

tissue due to an applied magnetic force that acts on superficial samples with magnetic nanoparticles embedded would
be useful:

z̈np(t) =

a
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. (32)

Finally, the tissue’s surface displacement due to nanoparticles embedded in elastic media, zs(t), when combined with
F = ma = mz̈np, becomes

zs(t) =
[

mz̈np

16πG(1− ν)

]
3−4ν
R1

+ 8ν2−12ν+5
R2

+ (z−c)2

R3
1

+ (3−4ν)(z+c)2−2cz
R3

2
+ 6cz(z+c)2

R5
2

 . (33)

Figure 7 shows simulation result derived from Eq. (33)
and the corresponding experimental result. Figure 7(a)
shows the simulation result for tissue surface displace-
ment in iron-laden elastic media obtained using Eq. (33)
with a magnetic field input (1 Tesla at 2 Hz) for the
case of a force normal to the boundary (c = 0.5 mm,
ν = 0.4, and G = 100), where G is the shear modulus
and E is Young’s module expressed by relationship, E =
2(1 + ν)G. Figure 7(b) illustrates the result of the iron-
laden tissue displacement using a DP-OCT system to
measure the surface displacement due to the application
of a magnetic force to nanoparticles in elastic media.

IV. DISCUSSION

The tissue surface displacement due to an externally
applied magnetic field consists of two motions, transient
and steady state, from simulation data and experimental
data, as shown in Figs. 7(a) and (b). After a transient
response, the physical displacement approaches a steady-
state response that resembles the input sinusoidal signal.
All experimental data for the steady state show that the
frequency response of tissue’s surface displacement from
iron-laden macrophages was exactly twice the exciting
frequency of the input magnetic field as shown in Figs. 5
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Fig. 7. (Color online) (a)Simulation results for tissue sur-
face displacement (∆zs) as in the experimental setup. (b)
Tissue surface displacement (∆zs) in iron-laden liver speci-
mens due to nanoparticle movement in response to a focused
magnetic field with a 2 Hz input for rabbit aorta with a MION
dose of 0.2 mmol Fe/kg using. The experimental data was
acquired by using an applied DP-OCT and applied maximum
magnetic flux density of 0.47 Tesla.

and 7. The motion of the nanoparticles at double the
modulation frequency originates from the magnetic force
being proportional to the product of the magnetic flux
density and the gradient from Eq. (6). The amplitude
of the tissue’s surface displacement in the steady state
may depend on the magnetic field and its gradient as a =
χsVs

2mµ0
Bz(0)∂Bz(0)

∂z . In Eq. (10), the maximum amplitude
of the nanoparticle displacement at steady state occurs
when ω2

B = ω2
0 −

γ2

2 . Alternatively, when ω0 � ωB , the
amplitude of movement diminishes to zero. The vari-
ation in the amplitude of tissue’s surface displacement
(zs(t)) by applying a sweep frequency may be associated
with the spatial variations of viscoelastic tissue proper-
ties (γ, ω0) in different specimens. Further experimental
studies and mathematical simulations will be required to

evaluate the spatial variations of γ and ω0. The quanti-
tative interpretation of the tissue’s surface displacement
(zs(t)) in specimens containing different sizes of magnetic
nanoparticles will require further study and necessitate
a mathematical model incorporating viscoelastic proper-
ties of tissue. Furthermore, a mathematical model incor-
porating the viscoelastic properties of tissue will allow a
quantitative analysis of tissue displacement in iron-laden
specimens for high-risk plaque lesions.

Our results suggest that DP-OCT, with nanome-
ter resolution, may allow detection of iron-laden
macrophages at relatively low doses of MION nanoparti-
cles in vulnerable atherosclerotic plaque lesions, which
was confirmed by histological findings (results not
shown).

V. CONCLUSION

In conclusion, the frequency response of tissue move-
ment in response to an externally- applied magnetic field
was twice the stimulus frequency, which is consistent
with established magneto-dynamic principles. Increasing
the magnetic-field strength increased surface displace-
ment of the specimens. In saline control specimens, no
significant tissue surface displacement (zs(t)) was ob-
served in response to an externally-applied magnetic field
in both liver and aorta specimens. The results of our
experiments suggest that magneto-motive DP-OCT is a
promising technique for detecting of macrophages with
magnetic nanoparticles for molecular imaging applica-
tions in patients with cardiovascular disease.
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